



### **GSIPP 2013**



Hans C. Hansen, MD



## DISCLAIMER

HANS C. HANSEN MD BOARD OF DIRECTORS, ASIPP Medical Director, The Pain Relief Centers, PA Conover, North Carolina Publications: ASIPP No outside funding, no grants, Illustrations-Webster, ASIPP/ Pain Physician/Generated

## **Opioid Abuse**

### "The bottom line is there will never be enough specialists to deal with the problem."

Scott Fishman, MD

### THIS IS NOT TRUE.....





## **OXYCONTIN**

# NO CEILING EFFECT NO ACETAMINOPHEN ISSUES TITRATABLE MINIMAL STREET USE

WATME 1998

## WE'VE GOT AN EPIDEMIC HERE.....



## IT'S LEGAL!

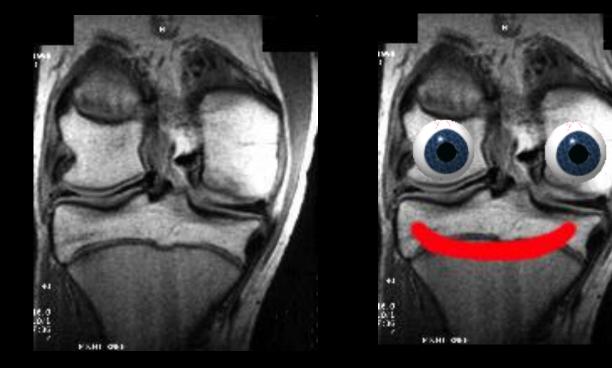


## YOUR WAITING ROOM 3 p.m. Friday afternoon....



Ginger




## PHARMACEUTICAL REPRESENTATIVES



**Medicine requires** observation and conclusion See Hear Touch Measure

**Observation verifies reality.** 

## WE JUST WANT TO MAKE YOU HAPPY





## Welcome To Mount Airy Historic Downtown





Sent To Your **Email Or Phone** 



#### MARKETPLACE

Advertise With Us Austin Outdoors Green Pages Automotive Family Dating Real Estate House & Home Education Travel Get Coupons

DANVILLE, Va. -- A man who was working as the Easter Bunny at Danville's Piedmont Mall was arrested Friday after police said he was caught with pills without a valid prescription.

According to the Danville Police Department, 24-year-old Joshua Lee Bolling was charged with illegally possessing prescription narcotics.

The investigation began after police said they received complaints from mall businesses and management of behavior suggestive of possible criminal drug activity involving the man working as the Easter Bunny.



C) SHARE G 6

Joshua Bolling

Police said that Bolling was a contract worker for an outside company providing the Easter activities and was not employed by Piedmont Mall.

Bolling was asked to accompany officers away from the public area where he was working and he was escorted to a private changing area where he removed his costume and was arrested, officers said.

See Breaking News? Upload Pictures, Video | ulocal@wxii12.com

WHERE ARE WE GOING AND WHAT'S NEW • WHAT WE ARE

•TERMINOLOGY

ADDICTION OR PAIN

EPRESSION AND PAIN- SAME THING, KINDA

BIOLOGICS, AND OTHER DRUG THOUGHTS

•NEW IS AS NEW MIGHT BE

## ARE WE BOTTOM FEEDERS?

### **OR.... ECCENTRIC AND INSPIRED**

## WATME



## **ASSUMPTIONS- CHRONIC PAIN**

- A physician understands risks and management of addictive disease.
- Persistent failure to treat addiction is poor medical practice
- Failure to prescribe opioids when indicated is also poor medical practice
- Physicians traditionally receive little or no education about pain management or the treatment of addiction.

## **CHRONIC PAIN**

### Pain is undertreated

- Fear of patient harm
- Fear of regulatory, legal or licensing penalties
- Addictive disorder or risk for addiction
- Divert or misuse of medications

### **'PSEUDOADDICTION IS A PSEUDO REALITY'**

HH

## CHRONIC PAIN

### Most abused Prescription Drugs

- Opioids
- Central nervous system depressants
- Stimulants

Source: National Institute on Drug Abuse, National Institute of Health, US Department of Health and Human Services. Abuse and Addiction, Research Report Series, 2005. NIH publication number 05-4881. Rockwell, MD

## CHRONIC PAIN Psychotherapeutic Prescriptions

- 6.4 million people used psychotherapeutic drugs nonmedically
- 4.7 million use pain relievers
- 1.8 million use tranquilizers
- 1.1 use stimulants
- 272,000 use sedatives

### **PSEUDOADDICTION IS REALLY IAOTROGENIC ADDICTION**

## CHRONIC PAIN

Chronic Pain

'*Rewires*' the nervous system to continue sending signals after the original cause has been healed or removed.

• Anxiety, depression, and insomnia make the pain unbearable. COMORBIDITY



## *Pain is a <u>description</u> and not an entity* YOU MUST HAVE A DIAGNOSIS

## 3. REFERRAL RULE

## 4. Know Thy Meds 5 CLASSES, PICK 5

From a *compassionate* standpoint I want to relieve pain ...

From a *realistic* standpoint I must improve function

## **5. DO NOT CHASE PAIN!**

Narcotics are not always our best choice

## TERMINOLOGY

## **Opioid and Drug Speak**

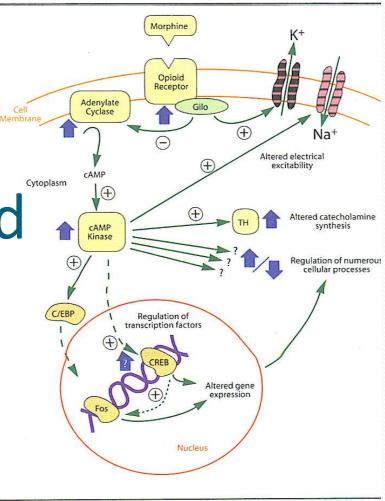
### • Definitions:

- Abuse: use of medication for purposes other than those for which it was prescribed
- Addiction: Impaired control over drug use, compulsive drug use and continued use despite harm and because of craving.
- Tolerance: A physiologic state caused by regular use of an opioid in which increased doses are needed to maintain the same effect.

## **Opioid** Use and Abuse

## • Physical Dependence :

- A normal physiologic state
- An expected result of opioid use
- Characterized by withdrawal
- Highly variable in its onset
- Sometimes coincides with addiction
- Is not, by itself addiction


## **Opioid** Use and Abuse

## Tolerance

- Natural state of neuroadaptation to drug- induced changes
- May result in increased analgesic needs
- Varies among individuals
- Varies according to the type of pain
- Develops more quickly in younger people
- Is not addiction

Pain Physician 2008: Opioid Special Issue: 11:S133-S153

Drug use, Tolerance, and the Sensitized Cellular Enviornment



### **Pharmacokinetics**

## A drugs effect is directly related to its concentration at the site of action

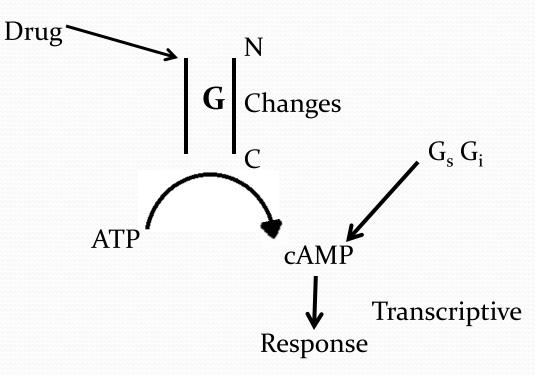
### What we do <u>to</u> the drug

### Pharmacokinetic - Drug movement and concentration •Blood •Tissues •Fluids

### **Concentration influenced by:**

- •Absorption
- •Elimination/excretion
- Distribution
- Metabolism

### **Pharmacodynamics**


Effect Biochemical, physiologic

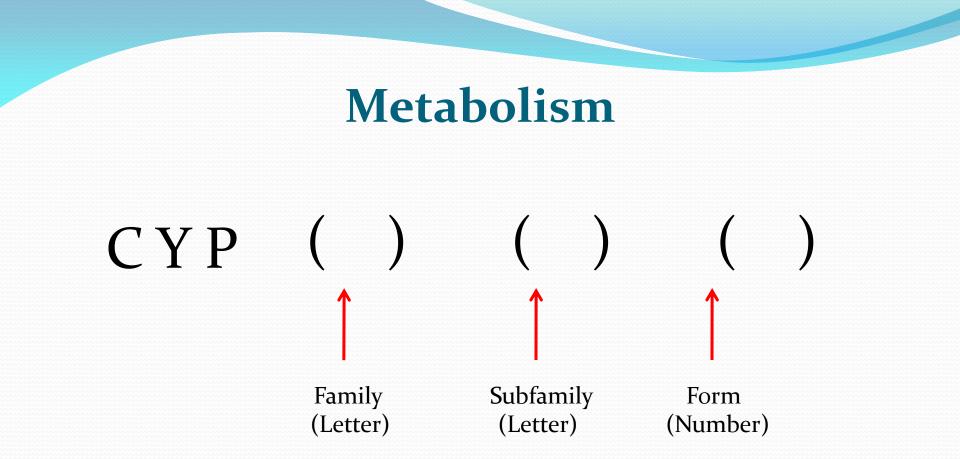
What the drug does to <u>us</u>

## Pharmacodynamics

### Receptors

Ligand – Flow of ions Effector – G Protein

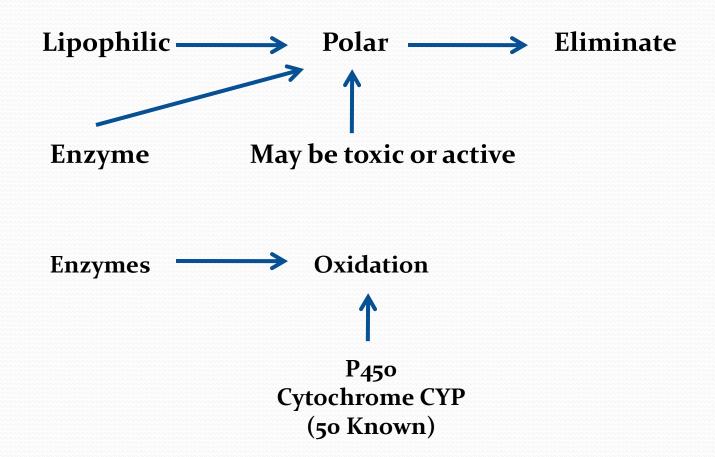


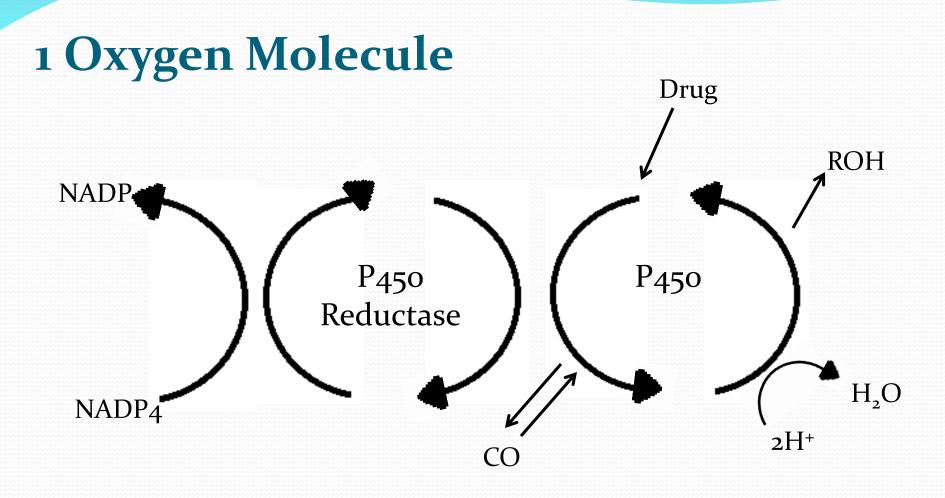

Active, inactive, partially active, selective



Adopted from Principles of Addiction Medicine 4<sup>th</sup> Edition

### **Acute Actions of Some Drugs of Abuse**


| Drug          | Action                                                                                              | Receptor Signaling Mechanism |
|---------------|-----------------------------------------------------------------------------------------------------|------------------------------|
| Opiates       | Agonist at $\mu$ , $\delta$ and $\kappa$ opioid receptors                                           | Gi                           |
| Cocaine       | Indirect agonist at Dopamine<br>receptors by inhibiting dopamine<br>transporters                    | Gi and Gs                    |
| Amphetamine   | Indirect agonist at Dopamine<br>receptors by stimulating Dopamine<br>release                        | Gi and Gs                    |
| Ethanol       | Facilitates GABA <sub>A</sub> receptor function<br>and inhibits NMDA glutamate<br>receptor function | Ligand-gated channels        |
| Nicotine      | Agonist at nicotinic acetylcholine receptors                                                        | Ligand-gated channels        |
| Cannabinoids  | Agonist at Cb <sub>1</sub> and CB <sub>2</sub> cannabinoid receptors                                | Gi                           |
| Phencyclidine | Antagonist at NMDA glutamate receptor channels                                                      | Ligand-gated                 |
| Hallucinogens | Partial agonist at 5HT <sub>2A</sub> serotonin receptors                                            | Gq                           |
| Inhalants     | Unknown                                                                                             |                              |




#### **CYP3A** – Metabolizes 50% of drugs.

May be broken down by genes and pseudogenes.

### Metabolism





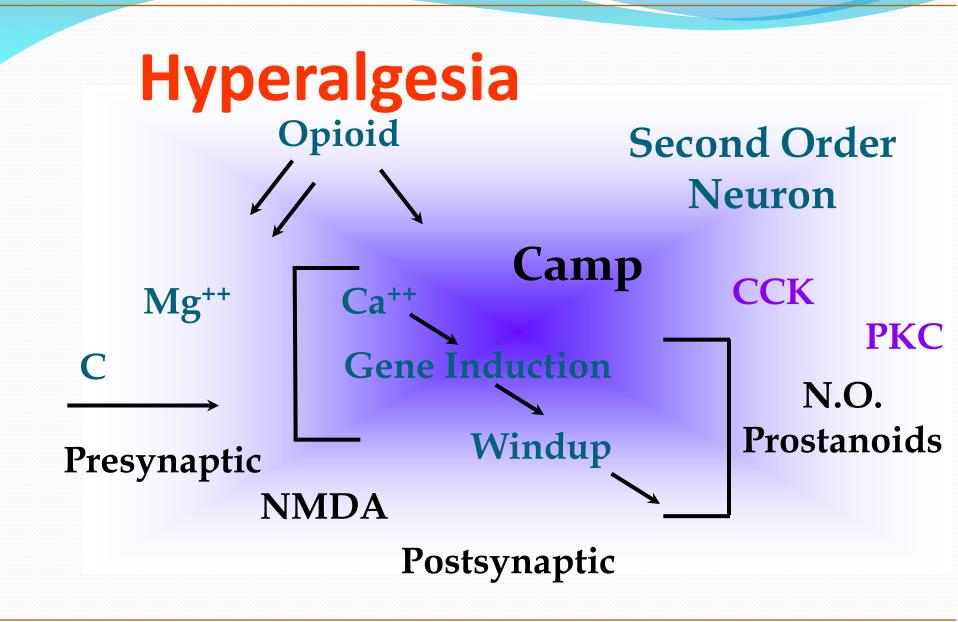
Liver > Lung/GI/Skin/Kidney

**Elimination/Excretion** 

**Elimination** – Metabolism or excretion of parent drug/metabolite

**Excretion** – Removal without changing the drug

**Clearance** – Rate that this occurs

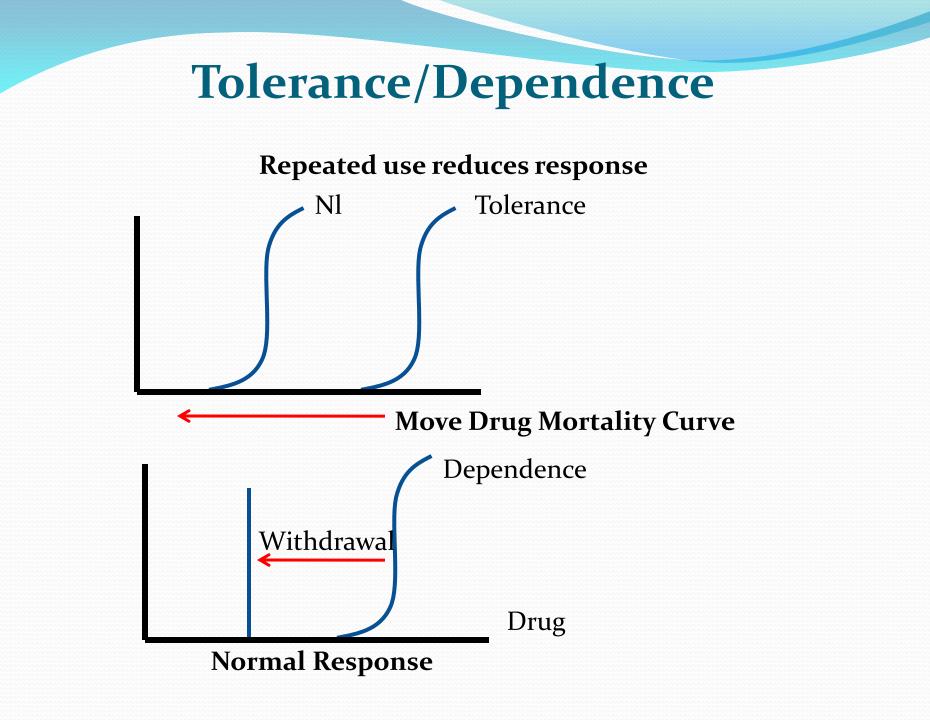

t <sup>1</sup>/<sub>2</sub> - half life, 50% change, in time, to or from steady state

#### **Opioid Interactions**

-Hyperalgesia- persistant noxious
stimulation and EAA activity (glutamate)
= neuroplasticity

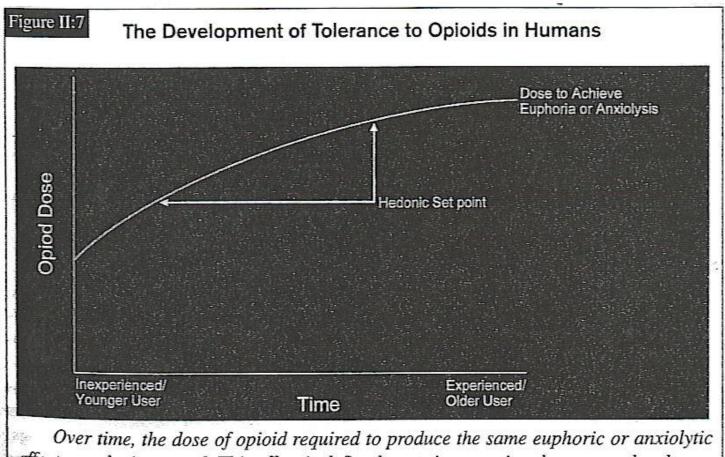
-Increase protein kinase C (PKC) intracellularly

--PKC increases with prolonged opioid exposure




#### Increase PKC

## Increases NMDA receptor sensitivity to EAA's


#### Decreases opioid responsiveness





#### **CONCEPT OF TOLERANCE**


#### L. WEBSTER M.D.



effect must be increased. This effect is defined as an increase in tolerance and a change in the hedonic set point.

#### ASSESSMENT

## WELL, IS IT PAIN, OR IS IT ADDICTION?



#### **RISK MANAGEMENT**

# Water, taken in moderation, cannot hurt anybody.

**Mark Twain** 

UNLESS YOU ARE A PHYSICIAN OR PHARMACEUTICAL COMPANY....



#### IF WATER WAS INTRODUCED TODAY, A BLACK BOX WARNING WOULD BE REQUIRED...

How to tell if your doctor is

## YOU CAN DROWN

BELIEVE it or not, this doc's harmless.

## A SERIAL KI

By BECKY TODD

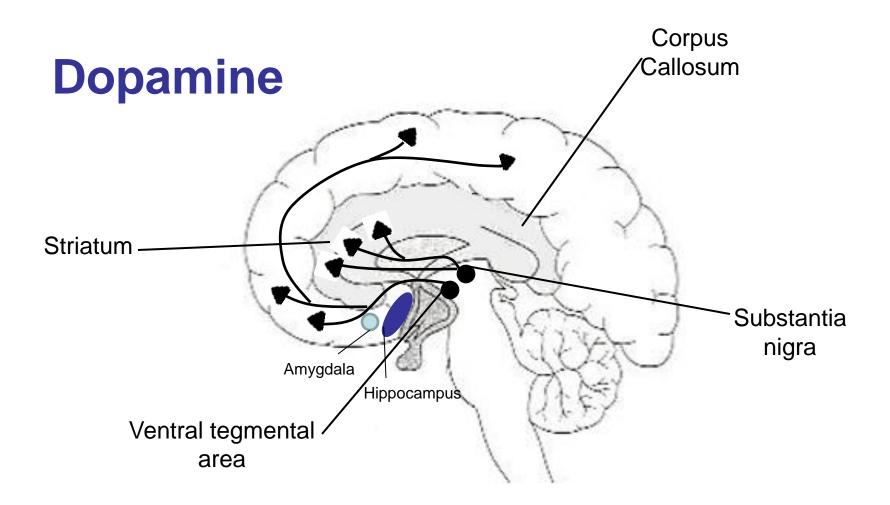
OUR doctor could be a serial killer and you'd never suspect a thing! "Most physicians are dedicated to saving lives, and they do a heroic job," says Professor Gary Givens, a member of the government's Medical Crime Investigative Service (MCIS).

"But more often than the AMA would like to admit, a psychopathic monster slips through the cracks. After all, doctors are only human, and it's well documented that roughly 50 percent of the population is totally bonkers."

Givens says homicidal maniacs often get away with their crimes because they have access

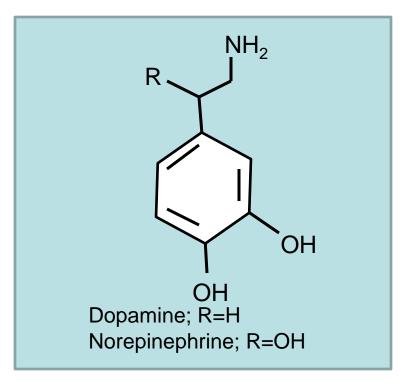
## **Opioid** Abuse

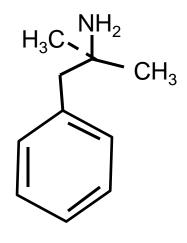
## 4 C's


## Addicted behaviors

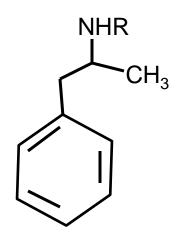
- Impaired **c**ontrol over drug use
- Compulsive use of the drug
- Continued use of the drug despite harm
- Craving for the drug

## ADDICTION


- REWARDING
- REINFORCING
- PLEASURE
- ACTIVATE BRAIN CIRCUITRY
- DEGREE OF ACTIVATION CORRELATES WITH ADDICTION TENDANCY
- REWARD NEUROTRANSMITTER IS.....


## **DOPAMINE (DA)**




#### **MOTHER OF ALL ADDICTIVE THINGS**

Adopted from Principles of Addiction Medicine 4<sup>th</sup> Editio









Amphetamine; R=H Methamphetamine; R=CH3 Benzphetamine; R=benzyl



Phenylephrine

## **Avoiding Opioid Abuse**

## Brain Reward Circuitry

- Nucleus accumbens
- Ventral tegmental area
- Amygdala
- Locus ceruleus
- Dopamine, NE, enkephalin, GABAergic,
- Dynamic outflow circuitry

## ADDICTION

#### NUCLEUS ACCUMBENS (NUACC) AND DOPAMINE (DA)

- DOPAMINERGIC REWARD RELATIONSHIP
- ENCODES RECIEPT OF REWARD
- DEGREE OF REWARD
- ANTICIPATION
- EXPECTANCY
- PREDICTION
- DISSAPOINTMENT

## ADDICTION

- ALMOST ALL ADDICTIVE DRUGS ARE DA ACTIVATORS
- DOPAMINE AGONISTS ARE IMPORTANT-NEUROLEPTICS- BUT PROBLEMATIC
- DOPAMINE ANTAGONISTS DIMINISH DESIRE
- DOPAMINE ANTAGONISTS- CAN INCREASE
   DRUG INTAKE TO COMPENSATE

 NUCLEUS ACCUMBENS ON FIRE W/DRUG DESIRED
 DOPAMINE IS AN ADDICTS GASOLINE

#### **Receptors/Genes**

Decreased D<sub>2</sub> receptors, decreased metabolism in CG, no longer inhibit drive to use substances.

People with increased D<sub>2</sub>, less likely to develop Substance Abuse Disorder (SUD).



## ADDICTION

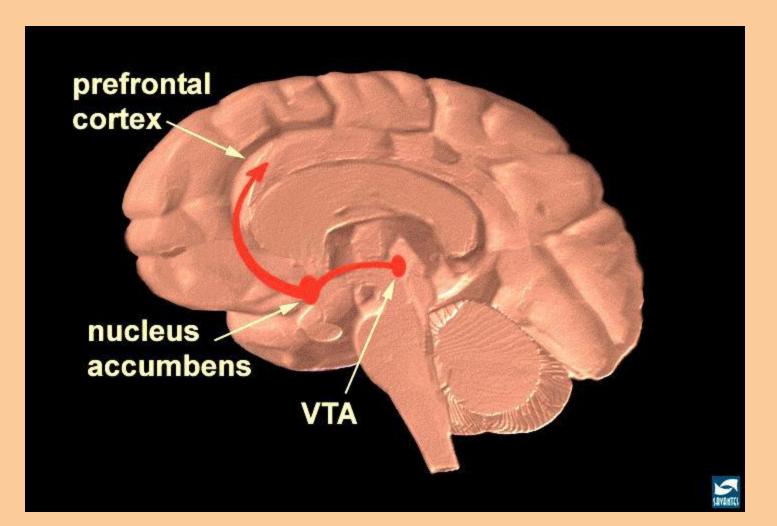
D3 Receptor only found in pleasure -Reward

#### D2 is dysphoric when blocked

Addicts have circuitry and reward deficiency

D3 – "Block"-- Diminish drug seeking, drug triggered relapse, cue, trigger, incubation, craving

#### The Mechanistic Classification of Drugs of Abuse


| Name                                                     | Main molecular target                                                    | Pharmacology       | Effect on dopamine (DA) neurons      |
|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------|--------------------------------------|
| Drugs that bind to ionotropic Receptors and ion channels |                                                                          |                    |                                      |
| Nicotine                                                 | nAChR                                                                    | Agonist            | Disinhibition                        |
| Alcohol                                                  | GABA <sub>A</sub> R, 5-HT <sub>3</sub> R, nAChR,<br>NMDAR, Kir3 channels |                    | Disinhibition                        |
| Benzodiazepines                                          | GABA <sub>A</sub> R                                                      | Positive modulator | Disinhibition                        |
| Phencyclidine                                            | NMDAR                                                                    | Antagonist         |                                      |
| Drugs that activate G protein-coupled receptors          |                                                                          |                    |                                      |
| Opioids                                                  | -OR (G <sub>io</sub> )                                                   | Agonist            | Excitation, disinhibition (?)        |
| Cannabinoids                                             | CB1R (G <sub>io</sub> )                                                  | Agonist            | Excitation, disinhibition (?)        |
| LSD, mescaline, psilocybin                               | 5-HT <sub>2A</sub> R (G <sub>q</sub> )                                   | Partial Agonist    |                                      |
| Drugs that bind to transporters of biogenic amines       |                                                                          |                    |                                      |
| Cocaine                                                  | DAT, SERT, NET                                                           | Inhibitor          | Blocks DA uptake                     |
| Amphetamine                                              | DAT, NET, SERT, VMAT                                                     | Reverses transport | Blocks DA uptake, synaptic depletion |
| Methylenedioxymethamph<br>etamine (MDMA)                 | SERT>DAT, NET                                                            | Reverses transport | Blocks DA uptake, synaptic depletion |

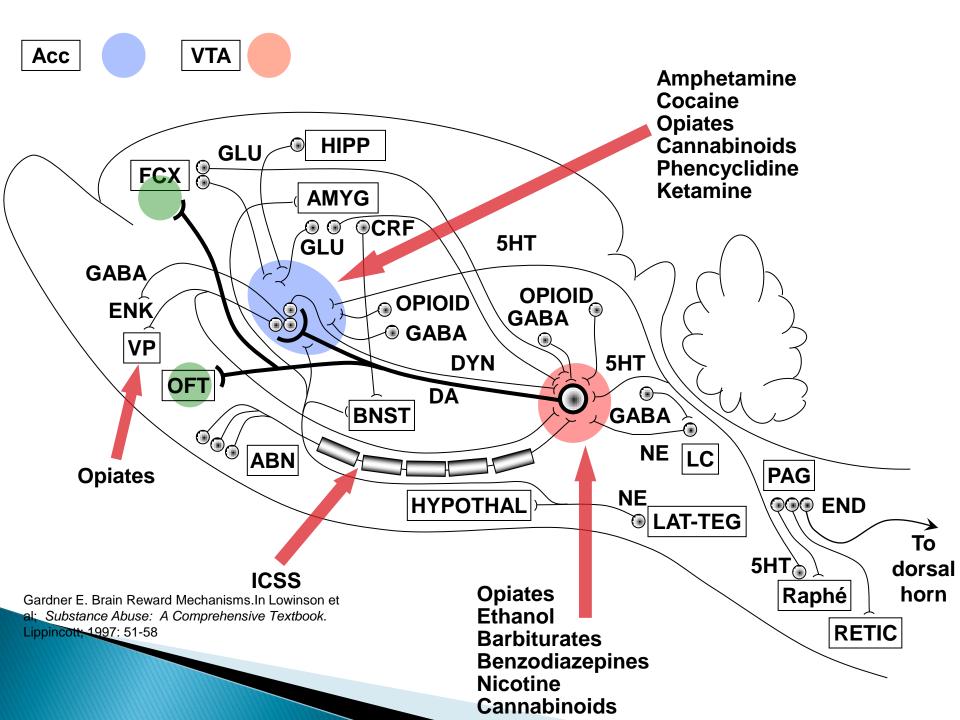
## Neurobiology of Addicition

>>> The Reward Pathway

## **THE STUPID CENTER**

#### "The seat of the addict's soul lies in the nucleus accumbens" -Griffith Edwards




#### **MEDIAL FOREBRAIN BUNDLE**

Ventral tegmental area (VTA)

Lateral hypothalamus (LH)

Nucleus accumbens (Nacc)

•Frontal cortex (FC)\*
•Prefrontal cortex (PFC)
•Orbitofrontal cortex (OFC)



## The "Hijacked" Brain Hypothesis

- Addictive drugs act on the same brain-reward substrates and mechanisms as do natural biologically-essential rewards (e.g., food, sex, etc)
- Addictive drugs derive much of their addictive power by activating these brain-reward substrates and mechanisms more powerfully than natural biologically-essential rewards (e.g., food, sex, etc)
- Experimental evidence for this

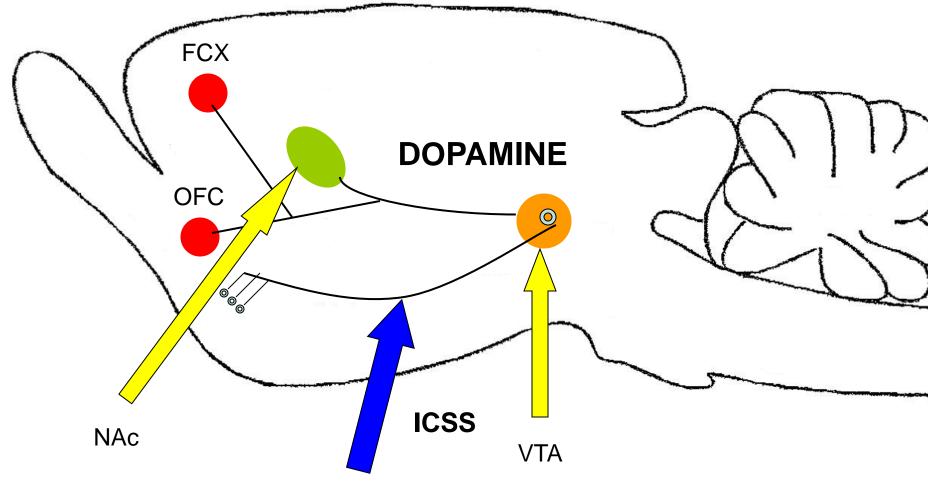


### **Nucleus Accumbens**

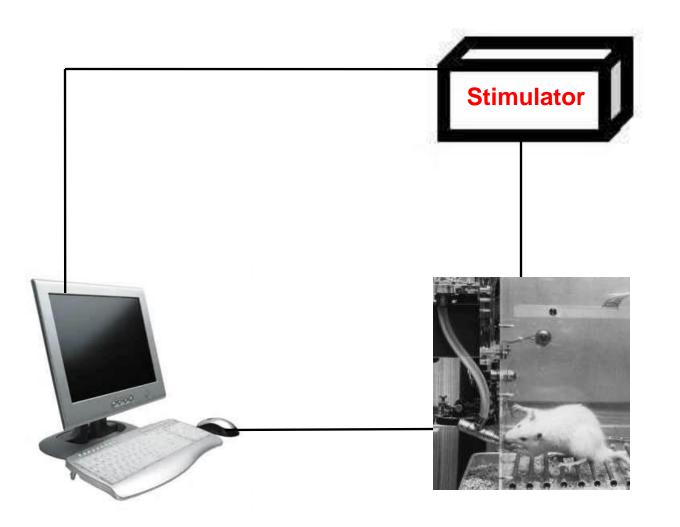
The brain's reward center Mediates motivation to behavior associated incentive Dopamine transmission






## Anterior Cingulate Gyrus = Anticipated reward

## **Amygdala= Emotions**


**Nucleus Accumbens= Motivation** 

### Progressive Ratio Self-Administration

- Designed to progressively increase the workload on the experimental animal i.e. first push yields injection, then requires 2 pushes for injection, then 4, 8, 16, 32
- Break point is defined as the ratio when the animal will abruptly STOP pushing to get injection



**Electrode Stimulation** 

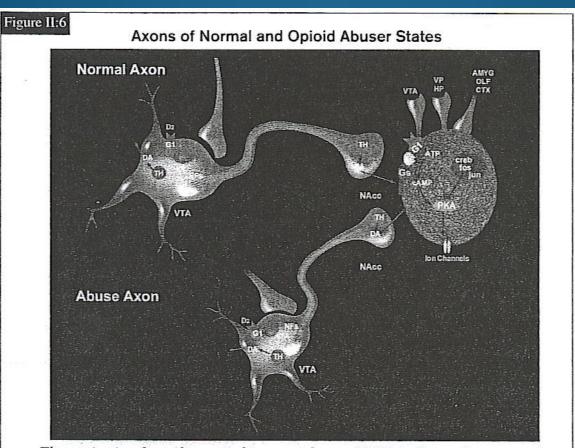


## **Reward Pathway**

Most drugs of abuse have a relationship to the limbic system

Addictions alter neurochemistry in the limbic system

Drug seeking is driven by emotion, not logic


# Progression of the Disease of Addiction

- Recreational occasional use
- Recreational steady use
- ▶ Reward-driven use → Habit-driven use
  - No longer rewarding or only with first use of day
    Transition from ventral striatum to dorsal striatum
- Habit-driven use  $\rightarrow$  Compulsive use
- Denial, the "Crash," "Bottoming Out"
- Treatment and achievement of abstinence
- Persistent vulnerability to craving and relapse

#### EXPECT A RELAPSE

## DEPRESSION, PAIN, AND THE SICK NEURON!

#### **SICK NEURON**



The projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) changes over time after continued opioid exposure or in patients who are genetically predisposed to the disease of addiction. The left VTA neuron shows a robust connection to the NAcc neuron, and the stimulus of the NAcc has normal structure and function. The right VTA neuron illustrates the effects of long-term opioid exposure or opioid addiction in an individual who is genetically vulnerable to the disease of addiction. The connection to the NAcc on the right shows less structure and function than that of a healthy VTA neuron. This in turn affects the function of the NAcc.

## Concept of Neurodegeneration

#### **Neurodegeneration Disorders**

### Atrophy and loss of neurons and glial cells

## Treatment Resistant Depression (TRD)

## Mood, Receptors, Depression

Medieval

Depression and Humors (Black Bile)

17<sup>th</sup> Century

Early 20<sup>th</sup> Century

Current

Duelism – Mind, body, social environment

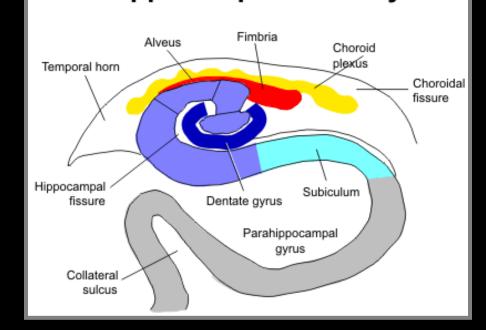
Sigmund Freud – Brain would describe mental illness

Receptor technology



## BDNF

<u>Hippocampus</u> Connections to amygdala and prefrontal cortex Learning and Memory


Cognitive Emotion BDNF supports health of brain cells and promote new Neurons NEUROGENESIS

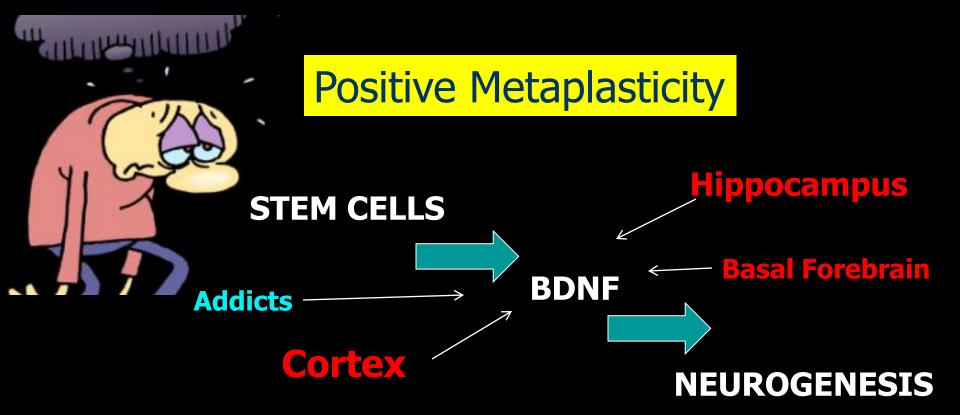


#### Neurogensis — Hippocampus

#### Rats, Monkeys, Humans

#### Neurons continue to be born in dentate gyrus of hippocampus

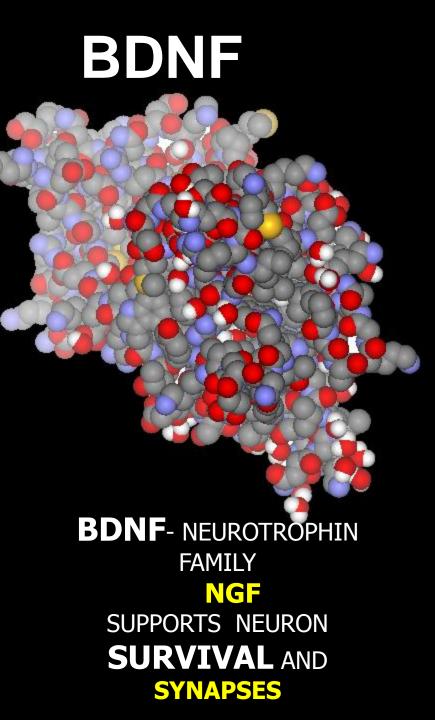



Hippocampal Anatomy

#### **Neurogensis Happens** (only in select areas)

Up-regulation of neurogenesis with antidepressants reverse atrophy of neurons (sick) that are present in depression, and addiction

BDNF protein, encoded by the BDNF gene


Increased expression of **BDNF** up regulate connectivity in Hippocampus



Loss of BDNF contributes to depression

# Stress is a precursor to mood disorders

Stress decreases BDNF Environment Genetic



Õ

CARNEGI

## Increased *Glucocorticoids*

Down regulate Hippocampal synaptic activity

**Negative Metaplasticity** 

Increase pain, cognition, dementia, amyloid, obesity epilepsy

> MEMORY DISTURBANCES, POOR LEARNING

**Glucocorticoids and steroids suppress Dentate Gyrus neurogenesis** – Gould

5-HT1a - Serotonin/receptors high concentration in Dentate Gyrus of Hippocampus

> Exercise stimulates neurogenesis



Some motivation required.

BDNF mRNA Up regulated in hippocampus with physical activity and antidepressants -GOOD



Stress = Depression

Neuronal atrophy – cellular level Decreased BDNF and Neurogenesis (Hippocampus)



### **BDNF** Blocking NMDA receptor stops eukaryotic elongation factor 2

(eEF2) Kinase → ↑ Translation phosphorylation (inactivated) → Rapid increase in *BDNF* 

Inhibit eEF2 kinase, get rapid antidepressant effect

eEF2 kinase suppresses BDNF production

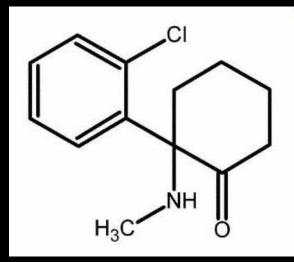
# Background Noise and Depression


BDNF

# eEF2 effect background activity

# Spontaneous nerve firing is important

#### ECT


#### strong role in plasticity



#### Ketamine NMDA receptor antagonist

#### Noncompetitive Decreases effectiveness of neurotransmitter

Glutamate Binds opioid receptors



Does not block NMDA activity

## Does block background noise link between spontaneous noise and depression



1 dose of Ketamine activates mammilian target of rapamycin (mTOR) signaling pathway

On switch to mTOR catabolism

# Mood, Receptors, Depression

#### **SYNAPTOGENESIS**

Depression results from brain's failure to grow new neurons at key regions

Receptor regulated



DEPRESSION

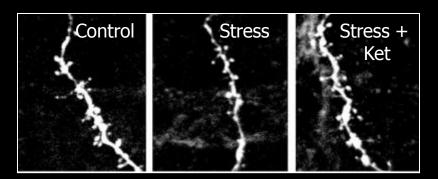
I had a lot of friends on that Death Star .....

# Ketamine/Synaptogenesis Ketamine activates mTOR, a ubiquitous protein kinase involved in protein synthesis and synaptic plasticity

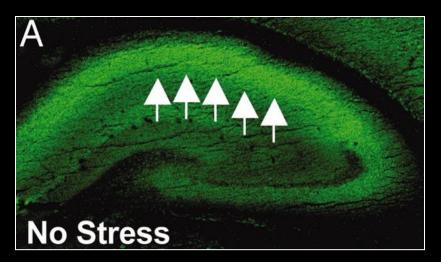


mTOR Kinase — Transcription DNA -

Increase in levels of synapse proteins
Increased mTOR


Increased spine density

Synapses and spine morphology necessary for learning and memory


Depression occurs when a cell is sick --- poor dendritic spine formation

Ketamine induces spine formation in hours

Aberrant TOR activity also seen in Diabetes Mellitus, obesity, heart disease, cancer, <u>pain</u> and <u>addiction</u>

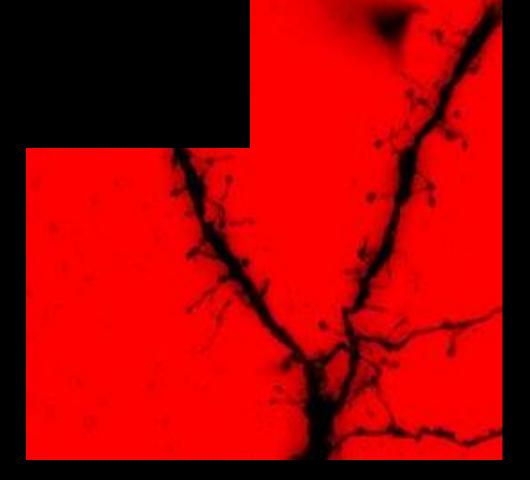


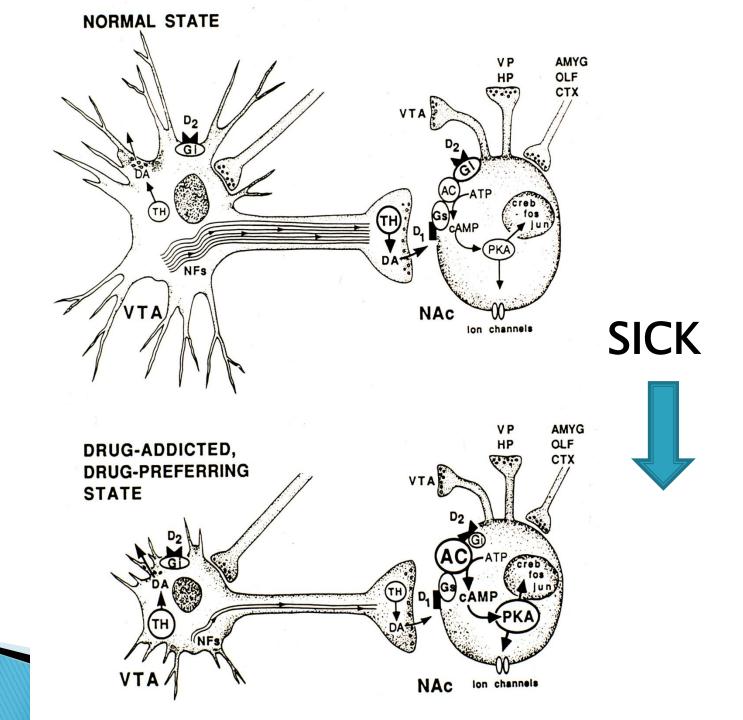
Proteins associated with synapses like Glutamate receptors (NMDA) and synapsin 1 are reduced during stress --- sick Ketamine increases them





Neurons in PFC create an apical tuft, creating spines


Depression – There is dendritic atrophy, and decrease in spines at the apical tuft


Ketamine induces synaptogenesis ---restores synapse connections

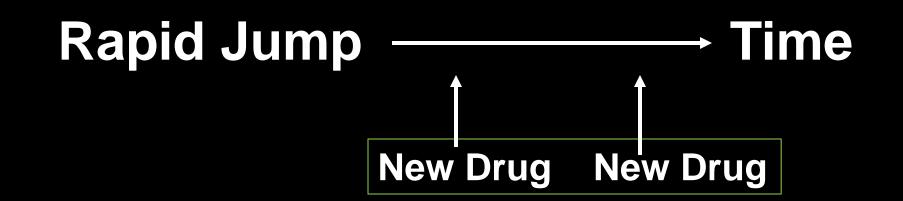
## SAME PROCESS



## ADDICTION






Low dose ---- distortion space/time, occasional hallucination,



mildly dissociative

0.1-0.5 mg/kg

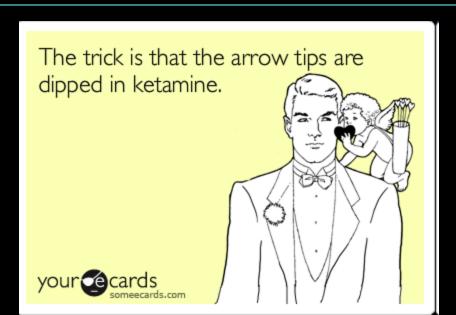
High dose ---severe distortion disconnect



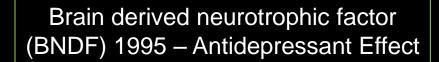
Benzodiazepine-GABAKetamineDopamine-StimulantsSerotonin-HallucinogenExcitatory-Glutamate NMDANeurotransmitter-indirect antagonist

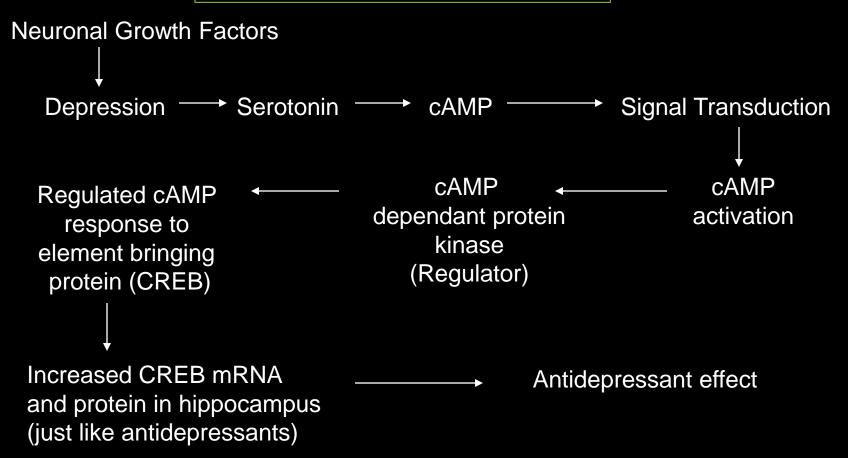
# Ketamine Works where PCP does

ECT and Ketamine reset background noise/activity


Protein eEF2 that activate NMDA effect on spontaneous activity

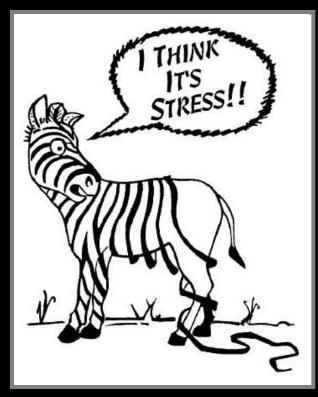
New Drugs Ketamine Dextromethorphan 2/3 patients who do not respond to other antidepressants improved hours after Ketamine exposure


40% - Antidepressants do not work


#### TRD – treatment resistant depression

## Ketamine




#### **Duman -2011 Neurotrophic Theory of Depression**





A link between antidepressants and cAMP pathway (CREB) regulating genes in the hippocampus producing antidepressant effect

Ketamine and antidepressant medications restore cell density and regulate higher order synaptic plasticity in hippocampus



## WHERE ARE WE GOING AND WHAT'S NEW

#### •WHAT WE ARE

•TERMINOLOGY

ADDICTION OR PAIN

•EPRESSION AND PAIN- SAME THING, KINDA

 BIOLOGICS, AND OTHER DRUG THOUGHTS

•NEW IS AS NEW MIGHT BE

# Biologics

DMARD Disease modifying anti-rheumatic drugs

TNF Block Embrel, Humira, Simponi, Cimzia

BRM Biologic response modifiers stimulate or restore system

### THE OPIOID SPARING DRUGS



# Unlike chemical medicine, biologics are large and complex

#### Can be unstable

#### May produce an immune response



# **Biologics** Similar to complex body proteins

#### Derived from recombinant DNA

Pick a Disease → Genetic Code/Sequence DNA Identified –

Transcription **DNA** inserted into living cells

→ Translate → Bioreactor → Cultured → Market ← Isolate from cell, purify ←



#### DMARD – Disease modifying anti-rheumatic drug *NOT* anti-inflammatory.

#### They modify the immune system.

Plaquenil, Gold Penicillamine, Methotrexate, Sulfasalazine, Minocin, Cytoxan

# **Biologics/Risk**

Tumor Necrosis Factor --- a TNF a

DMARD Infection – 4%

Biologic – 7% at 3 years, risk is at baseline



# Biologics

#### **TNF – a** - TNF – a and IL-1 are macrophage derived cytokines Associated with inflammation

#### TNF blockers bind to TNF – a, now Inactive, interfering with inflammatory cascade (Beware of TB/infections)



# Biologics

Actemra (Tocilizumab) – Blocks IL-6

(Cytokine) – IL-6 is inflammatory

Orencia (Abatacept) – Depresses T Cells

Rituxan (Rituximab) – Depletes B Cells







## WHERE ARE WE GOING AND WHAT'S NEW

#### •WHAT WE ARE

•TERMINOLOGY

ADDICTION OR PAIN

EPRESSION AND PAIN- SAME THING, KINDA

BIOLOGICS, AND OTHER DRUG THOUGHTS

## •NEW IS AS NEW MIGHT BE

# Biologics

#### Platelet Rich Plasma Regeneration

Fraction plasma – contains multiple growth factors

Stimulates

Cell prolifertion
Proteoglycans
Collagen



# A New Disc

#### Platelet Rich Plasma



Gelatin hydrogel microspheres

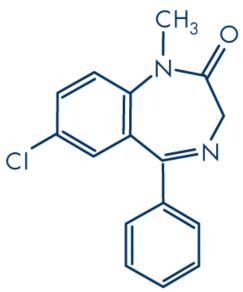
Mobilize growth factor  $\beta 1$ 

Intervertebral disc cell proliferation and proteoglycan synthesis





Wildly overprescribed-#1 class in U.S.


AN UNAPPRECIATED KILLER

Benzodiazepines Serotonin is inhibited ·Pain threshold reduced •Further decays natural sleep •Further promotes depression Dopamine release inhibited Stage 4 sleep impaired

# Benzodiazepine

Potentiates activity if GABA<sub>A</sub>
Opens chloride channel
Membrane hyperpolarizes
Inhibits cellular excitation
Similar effect ETOH

# BARBITURATE





# Cox I

#### Number of Deaths in the United States

| Hodgkins         | 1,400  |
|------------------|--------|
| Cervical cancer  | 4,400  |
| Multiple myeloma | 10,500 |
| AIDS             | 16,500 |
| Leukemia         | 20,000 |
| Drunk drivers    | 23,000 |

# Cox I

# NSAID Toxicity16,500As many people die from NSAIDtoxicity as AIDS15th most common cause of death in the United

**States** 

#### "Silent epidemic"

Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs

NEJM 340 No.24

U.S. Mortality Data 1997



# Singh et al. study GET LUCKY – <u>4 fold increase CV risk for patients on Mobic</u>

<60 days versus >60 days

#### Graham et al. (retrospective) study

- Analyzed data from California's Medicaid program of over 15,000 heart attack patients
- <u>37% increase heart attack risk w/ Mobic</u>
- 32% increase w/ Vioxx
- -0.9% increase w/ Celebrex

Is CV risk related to pro/anti thrombotic mediation?

# Thromboxane A<sub>2</sub>—COX I —Pro-thrombotic

Prostaglandin I<sub>2</sub> (prostacyclin)— COX II
Apti thrombotic

-Anti-thrombotic

#### **COX-2** Cardiovascular Effects

#### Hypothesis

#### Inhibition of vascular prostacyclin synthesis AND

#### Lack of effect on platelet thromboxane synthesis

#### IMBALANCE

Prothrombotic state

Increased thromboembolic cardiovascular events

McAdam et al. Proc Natl Acad Sci USA. 1999;96:272-277.

If COX II anti-thrombotic PGI<sub>2</sub> is blocked, TXA<sub>2</sub> pro-thrombotic is unopposed.

> Conceivably, a CV thrombotic event may evolve.

EXAMPLE OF RULE 4 PGE inhibits release of NE in many tissues

CRPS

# GIVE AN NSAID-MAKE THE PROBLEM WORSE? RULE 2 RULE 4

# CANNABINOIDS IS MARY J OK?

## MAYBE SO....

# CANNABINOIDS

- Definitive analgesic properties- E. Gardner
- There is a role for treatment of pain
- Speeds bone healing by endo cannabinoid regulation of osteoclastic activity
- Stroke infarct reduction

# CANNABINOIDS

- Ubiquitous CB1, CB2 Receptors
- CB1 antagonists are anti-addictive (cocaine)
- All pain models (hot plate, caragein, familia) demonstrate analgesia
- CB<sub>2</sub> is an antinflammatory
- 2AG,JZC184 receptors isolated to analgesia
- Can vaporize to eliminate smoking issues
- Therapeutic in many disorders- HIV, ALS etc
- Cannabis indica (not sativa) 5-HT1 agonist,CBD:THC ratio effects alertness, sedation,hunger, stimulation. Sativa- high. Indica-mellow

# **ADDICTION MEDICINE**

- OAT (opioid agonist therapy)
  - Use of opioid to taper off from abused opioid
  - Methadone
  - Buprenorphine
  - Others?

### Opioid Abuse Suboxone

## Suboxone

- MU partial agonist
- Ceiling effect
- Safer than methadone
- Schedule III
- Naloxone 4:1 ratio- poor activity PO, Potent IV
- High dose methadone more effective
- Retention, not as quick as Methadone therapy
- Oral substitute less aberrant behavior
- Cochrane review supported (evidence based)

## **Opioid Abuse**

# Methadone

- Inhibitor ascending pathways
- Diminished pain response
- Preferred opioid agonist treatment
- Plasma levels 400mg/ml to diminish craving
- Remedies criminal behavior
- Improved social structure

THIS DRUG IS A VERY DIFFICULT DRUG TO MANAGE -

#### **Medications for Treating Drug and Alcohol Addiction**

| Clinical Target                          | Medication           | Biological Target      |
|------------------------------------------|----------------------|------------------------|
| Alcoholism<br>FDA Approved               | Disulfiram           | Aldehyde Dehydrogenase |
|                                          | Naltrexone           | Mu Opioid Receptor     |
|                                          | Acamprosate          | Glutamate Related      |
| Under Investigation                      | Valproate            | GABA/glutamate         |
|                                          | Nalmefene            | Mu Opioid Receptor     |
|                                          | Rimonabant           | CB1 Receptor           |
| Smoking Cessation                        | Nicotine Replacement | Nicotinic Receptor     |
|                                          | Varenicline          | Nicotinic Receptor     |
|                                          | Bupropion            | DA Transporter Blocker |
| Under Investigation                      | Deprenyl             | MAO-B Inhibitor        |
|                                          | Rimonabant           | CB1 Receptor           |
|                                          | Methoxsalen          | CYP2A6                 |
| Heroin/Opiate Addiction                  | Naltrexone           | Mu Opioid Receptor     |
|                                          | Methadone            | Mu Opioid Receptor     |
|                                          | Buprenorphine        | Mu Opioid Receptor     |
| Cocaine Addiction<br>Under Investigation | Topiramate           | GABA Agonist           |
|                                          | Gabapentin           | GABA/Glutamate         |
|                                          | Tiagabine            | GABA Transporter       |

Thank You